Paper: OmniFair: A Declarative System for Model-Agnostic Group Fairness in Machine Learning. [1]

Jiaxin Liu

Group Reading

November 4, 2021

Jiaxin Liu (Group Reading) Paper: OmniFair: A Declarative System for N November 4, 2021

Introduction

• Group Fairness Constraints

OmniFair

- Declarative Specification
- Single Fairness Constraint
- Multiple Fairness Constraints

3 Experiments

Notations and group fairness constraints

- $x \in \mathbb{R}^d$, $y \in \{0,1\}$ and $D = \{(x_i, y_i)\}_{i=1}^N$
- Goal: $h_{\theta}(x)$, where $h : \mathbb{R}^d \to \{0, 1\}$.

Group Fairness constraints:

- Statistical Parity (SP): $\forall g_i, g_j \in G$, $\Pr(h(x) = 1|g_i) \simeq \Pr(h(x) = 1|g_j)$
- False Positive Rate Parity (FPR): $\forall g_i, g_j \in G, \Pr(h(x) = 1 | g_i, y = 0) \simeq \Pr(h(x) = 1 | g_j, y = 0)$
- False Omission Rate Parity (FOR): $\forall g_i, g_j \in G, \Pr(y = 1 | g_i, h(x) = 0) \leq \Pr(y = 1 | g_j, h(x) = 0)$
- Misclassification Rate Parity (MR): $\forall g_i, g_j \in G, \Pr(h(x) = y|g_i) \simeq \Pr(h(x) = y|g_j)$
- False Negative Rate Parity (FNR), False Discovery Rate Parity (FDR)

DEFINITION 1. Fairness Specification (g, f, ε) and Fairness Constraint

A fairness specification is said to be satisfied by a classifier h on D if and only if all induced fairness constraints are satisfied, i.e.,

$$orall g_i, g_j \in g(D), |f(h, g_i) - f(h, g_j)| \leq arepsilon$$

where g(D) is the declarative grouping function and f(h,g) is the declarative fairness metric function.

Problem Formulation:

- Given a dataset D, an ML algorithm \mathscr{A}
- One or multiple group fairness constraints given by one or multiple (g, f, ε).
- Goal: h_{θ} that maximizes for accuracy, while satisfying given constraint(s).

Declarative Grouping Function g(D)

g(D) is a user-defined function that partitions the inpput data to different groups.

Example 1

A dataset $D = \{t_1, \ldots, t_{10}\}$, where t_4, t_5, t_7 and t_9 are African American and others are Caucasian. The grouping function partitions D as $g(D) = \{AfericanAmerican : [4,5,7,9], Caucasion : [1,2,3,6,8,10]\}.$

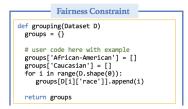


Figure: Interface for group function.

Declarative Fairness Metric Function f(h,g)

f(h,g) takes a classifier h and a group g as input, and returns (1+|g|) coefficients that specify how the metric is computed:

$$f(h,g) = \sum_{i \in g} c_i \mathbb{1}(h(x_i) = y_i) + c_0$$

	$c_i y_i = 0$	$c_i y_i = 1$	<i>c</i> ₀
MR	1/ g	1/ g	0
SP	-1/ g	1/ g	$ \{i: i \in g, y_i=0\} / g $
FPR	$1/ \{i: i \in g, y_i = 0\} $	0	0
FNR	0	$1/ \{i: i \in g, y_i = 1\} $	0
FOR	$1/ \{i: i \in g, h(x_i)=0\} $	0	0
FDR	0	$1/ \{i: i \in g, h(x_i) = 1\} $	0

Figure: Coefficients for different popular group fairness metrics.

Single Fairness Constraint

- Accuracy part: $AP(\theta) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(h_{\theta}(x_i) = y_i)$
- Fairness part: $FP(\theta) = f(h_{\theta}, g_1) f(h_{\theta}, g_2)$

$$\max_{\theta} AP(\theta) \tag{1}$$

s.t. $|FP(\theta)| \le \varepsilon$ (2)

Lagrangian dual function:

$$\begin{split} h(\lambda_1,\lambda_2) &= \max_{\theta} AP(\theta) + \lambda_1(\varepsilon - FP(\theta)) + \lambda_2(\varepsilon + FP(\theta)) \\ &= \max_{\theta} AP(\theta) + (\lambda_2 - \lambda_1)FP(\theta) + (\lambda_1 + \lambda_2)\varepsilon \end{split}$$

* $h(\lambda_1, \lambda_2)$ provides an upper bound for eq.1 for any $\lambda_1 > 0, \lambda_2 > 0$.

$$\max_{\theta} AP(\theta) + (\lambda_2 - \lambda_1)FP(\theta) + (\lambda_1 + \lambda_2)\varepsilon$$
(3)
$$\max_{\theta} AP(\theta) + \lambda FP(\theta)$$
(4)

LEMMA 1.

Assume the primal equation is feasible and let θ^* be an optimal solution to primal problem, then

• for any $\lambda_1, \lambda_2 > 0, h(\lambda_1, \lambda_2) \ge AP(\theta^*)$; and under strong duality assumption, $\min_{\lambda_1 > 0, \lambda_2 > 0} h(\lambda_1, \lambda_2) = AP(\theta^*)$

(2) for any $\lambda_1, \lambda_2 > 0$, let $\tilde{\theta}$ be an optimal solution to eq.(3), then there exists $\lambda \in \mathbb{R}$ (*i.e.* $\lambda = \lambda_2 - \lambda_1$) such that $\tilde{\theta}$ also optimizes eq.(4); and under stong duality assumption, there exists λ such that θ^* optimizes eq.(4).

$$\max_{\theta} AP(\theta) + \lambda FP(\theta)$$

Steps:

- enumerate all possible λ values;
- 2) find optimal θ for every λ
- **()** pick the one that has the maximal $AP(\theta)$.

How to solve eq. (5) for a given λ ? (step 2)

$$\begin{split} & \max_{\theta} AP(\theta) + \lambda FP(\theta) \\ &= \max_{\theta} \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{i} + \lambda \left(\sum_{i \in g_{1}} (c_{i}^{g_{1}} \mathbb{1}_{i} + c_{0}^{g_{1}}) - \sum_{i \in g_{2}} (c_{i}^{g_{2}} \mathbb{1}_{i} + c_{0}^{g_{2}}) \right) \\ &= \max_{\theta} \frac{1}{N} \sum_{i=1}^{N} w_{i}(\lambda, h_{\theta}) \mathbb{1}(h_{\theta}(x_{i}) = y_{i}) \end{split}$$

(5)

How to get weight $w_i(\lambda)/w_i(\lambda, h_{\theta})$?

weight	metric	$w_i y_i = 0, g_1$	$w_i y_i = 1, g_1$	$w_i y_i = 0, g_2$	$w_i y_i = 1, g_2$
	MR	$1 + \lambda N / g_1 $	$1 + \lambda N / g_1 $	$1 - \lambda N / g_2 $	$1 - \lambda N / g_2 $
$w_i(\lambda)$		$1 - \lambda N / g_1 $		$1 + \lambda N / g_2 $	$1 - \lambda N / g_2 $
Wi(n)	FPR	$1 - \lambda N / \{i : i \in g_1, y_i = 0\} $		$1 + \lambda N / \{i : i \in g_2, y_i = 0\} $	1
	FNR	1	$1 - \lambda N / \{i : i \in g_1, y_i = 1\} $	1	$1 + \lambda N / \{i : i \in g_2, y_i = 1\} $
	FOR	$1 - \lambda N / \{i : i \in g_1, h(x_i) = 0 $	1	$1 + \lambda N / \{i : i \in g_2, h(x_i) = 0\} $	1
	FDR	1	$1 - \lambda N / \{i : i \in g_1, h(x_i) = 1\} $	1	$1 + \lambda N / \{i : i \in g_2, h(x_i) = 1\} $

Figure: Weights for different popular group fairness metrics.

- For w_i(λ): any black-box ML algorithm.
- For $w_i(\lambda, h_{\theta})$:
 - if $\lambda_2 \lambda_1 \leq \delta = 0.00001$, then $h_{\theta_1|\lambda_1}(x_i) = h_{\theta_2|\lambda_2}(x_i)$.
 - So $w_i(\lambda_2, h_{\theta_2}) \subseteq w_i(\lambda_2, h_{\theta_1}).$
 - Starting from $\lambda = 0$ and taking small incremental steps δ to estimate weights.

LEMMA 2. Monotonicity for Single Fairness Constraint

Consider two values λ_1 and λ_2 , where $\lambda_1 < \lambda_2$, and let θ_1 and θ_2 denote two optimal solutions given λ_1 and λ_2 . Then, the following proprieties hold, where $AP(\theta_1), AP(\theta_2), FP(\theta_1), FP(\theta_2)$ are evaluated on the same input training set D:

 $FP(heta_1) \leq FP(heta_2)$ $AP(heta_1) \geq AP(heta_2) \quad where \lambda_2 \geq \lambda_1 \geq 0$ $AP(heta_1) \leq AP(heta_2) \quad where 0 \geq \lambda_2 \geq \lambda_1$

* ML model has the maximum accuracy when $\lambda = 0$.

Algorithm for tuning λ

Algorithm 1 Tuning Single λ

Input: Dataset D, a fairness constraint (q, f, ε) , an ML Algorithm \mathcal{A} **Output:** A fair ML model h_{θ} 1: $\theta_0 \leftarrow \text{apply } \mathcal{A} \text{ with } w_i(0)$ 2: $flag \leftarrow false$ if (weights are parameterized by θ) else true 3: if $|FP(\theta_0)| \leq \varepsilon$ then return h_{θ_0} 4: if $FP(\theta_0) > 0$ then change the order of q_1 and q_2 in FP 5: 6: $\lambda_1 \leftarrow 0$ and $\lambda_2 \leftarrow 1$ 7: if flag = true then $\lambda_l, \lambda_{\mu} \leftarrow \text{ExponentialSearch}(\lambda_l, \lambda_{\mu})$ 8: 9: else $\lambda_l, \lambda_{ll} \leftarrow \text{LinearSearch}(\lambda_l, \delta) // \text{ e.g. } \delta = 0.001$ 10: 11: while $\lambda_{II} - \lambda_I \ge \tau \text{ do } // \tau \rightarrow 0$; e.g. $\tau = 0.0001$ $\lambda_m \leftarrow (\lambda_u + \lambda_u)/2$ 12: 13: if flag = true then 14: $\theta_m \leftarrow \text{apply } \mathcal{A} \text{ with } w_i(\lambda_m)$ 15: else 16: $\theta_m \leftarrow \text{apply } \mathcal{A} \text{ with } w_i(\lambda_m, h_{\theta_i})$ if $FP(\theta_m) < -\varepsilon$ then $\lambda_l \leftarrow \lambda_m$ 17: else $\lambda_{ii} \leftarrow \lambda_{im}$ 18: 19: return h_θ....

20:

21: function ExponentialSearch(λ_1, λ_2) $\theta_{ii} \leftarrow \text{apply } \mathcal{A} \text{ with } w_i(\lambda_{ii})$ 22: while $FP(\theta_u) < -\varepsilon$ do 23: $\lambda_1 \leftarrow \lambda_n$ 24: $\lambda_{ii} \leftarrow 2 \times \lambda_{ii}$ 25: $\theta_{ii} \leftarrow \text{apply } \mathcal{A} \text{ with } w_i(\lambda_{ii})$ 26: return λ_1, λ_n 27: 28: 29: function LinearSearch(λ_l, δ) 30: $\lambda_{ii} \leftarrow \lambda_i + \delta$ $\theta_{\mu} \leftarrow \text{apply } \mathcal{A} \text{ given } \lambda_{\mu}$ 31: while $FP(\theta_u) < -\varepsilon$ do 32: $\lambda_1 \leftarrow \lambda_\mu$ 33: $\theta_1 \leftarrow \theta_n$ 34: $\lambda_{ii} \leftarrow \lambda_i + \delta$ 35: $\theta_{\mu} \leftarrow \text{apply } \mathcal{A} \text{ with } w_i(\lambda_{\mu}, \theta_l)$ 36: return λ_1, λ_2 37:

$$\max_{\theta} AP(\theta)$$

s.t. $|FP_i(\theta)| \le \varepsilon \quad \forall i \in \{1, \dots, k\}$

Lagrangian dual function is:

$$h(\Lambda_{1},\Lambda_{2}) = \max_{\theta} AP(\theta) + \sum_{i=1}^{k} \lambda_{1,i}(\varepsilon - FP_{i}(\theta)) + \sum_{i=1}^{k} \lambda_{2,i}(\varepsilon + FP_{i}(\theta))$$
$$= \max_{\theta} AP(\theta) + \sum_{i=1}^{k} (\lambda_{2,i} - \lambda_{1,i})FP_{i}(\theta) + (\lambda_{1,i} + \lambda_{2,i})\varepsilon$$

where $\Lambda_1 = <\lambda_{11}, \lambda_{12}, \dots, \lambda_{1k} >$ and $\Lambda_2 = <\lambda_{21}, \lambda_{22}, \dots, \lambda_{2k} >$.

$$\begin{split} & \max_{\theta} AP(\theta) + \sum_{i=1}^{k} \lambda_i FP_i(\theta) \\ & = \max_{\theta} \frac{1}{N} \sum_{i=1}^{N} w_i(\Lambda, h_{\theta}) \mathbb{1}(h_{\theta}(x_i) = y_i) \end{split}$$

LEMMA 4. Marginal Monotonicity for Multiple Fairness Constraints

Consider two settings Λ_1 and Λ_2 , that differ only in the j^{th} dimension, namely, $\Lambda_1[j] < \Lambda_2[j]$ and $\Lambda_1[i] < \Lambda_2[i]$ for all $i \neq j$. Let θ_1 and θ_2 denote the optimal solution given Λ_1 and Λ_2 . Then

 $FP_j(\theta_1) \leq FP_j(\theta_2)$

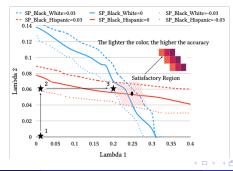
where $FP_j(\theta_1)$ and $FP_j(\theta_2)$ are evaluated on the same training set D.

Algorithm for tuning Λ

Algorithm 2 Hill-Climbing

Input: Dataset D, a set of k fairness constraint, and an ML Algorithm \mathcal{A} **Output:** A fair ML model h_{θ}

- 1: $\Lambda \leftarrow [0, \cdots, 0]$
- 2: $\theta \leftarrow \text{apply } \mathcal{A} \text{ with } w_i(0, -)$
- 3: while $\exists i$, s.t. $|FP_i(\theta)| > \varepsilon_i$ do
- 4: $i \leftarrow \arg \max_k ||FP_k(\theta)| \varepsilon_k|$
- 5: $\theta \leftarrow$ call Algorithm 1 to tune for the i-th fairness constraint, while fixing $\Lambda[j], \forall j \neq i$ to their current values
- 6: return Λ if (Λ ∈ intersection of all satisfactory regions) else "Not found after 5k iterations"



Jiaxin Liu (Group Reading)

November 4, 2021

Dataset and Experimental settings

• Dataset:

Dataset	# Rows	# Attrs	Sens. Attr	Task
Adult [18]	48842	18	sex	To predict if Income > 50k
Compas [4]	11001	10	race	To predict recidivism
LSAC [45]	27477	12	race	To predict if bar exam is passed
Bank [32]	30488	20	age	To predict if marketing works

Split each dataset to 60% training, 20% validation, and 20% test.

• ML algorithms:

- Logistic Regression (LR)
- Random Forest (RF)
- XGBoost (XGB)
- Neural Networks (NN)

	COMPAS				Adult				LSAC				Bank							
Algorithm	LR	RF	XGB	NN	CMA-ES	LR	RF	XGB	NN	CMA-ES	LR	RF	XGB	NN	CMA-ES	LR	RF	XGB	NN	CMA-ES
OmniFair	-1.2%	-0.8%	-0.7%	-1.2%	NA(2)*	-2.1%	-1.9%	-1.7%	-1.7%	NA(2)*	-0.3%	-0.3%	-0.4%	-0.1%	NA(2)*	-0.1%	-0.3%	-0.2%	-0.1%	NA(2)*
Kamiran et al. [28]	-2.5%	-1.3%	-1.2%	-1.5%	NA(2)*	-2.7%	-2.3%	-1.8%	-1.9%	NA(2)*	-0.4%	-5.6%	-2.2%	-0.4%	NA(2)*	+0.1%	-1.2%	-0.2%	-0.3%	NA(2)*
Calmon et al. [11]	-1.8%	-0.5%	-0.3%	-0.9%	NA(2)*	-3.7%	-3.1%	-3.0%	-2.4%	NA(2)	NA(1)	NA(1)	NA(1)	NA(1)	NA(2)*	NA(1)	NA(1)	NA(1)	NA(1)	NA(2)*
Zafar et al. [47]	-0.9%	NA(2)	NA(2)	NA(2)	NA(2)	-2.2%	NA(2)	NA(2)	NA(2)	NA(2)	-0.2%	NA(2)	NA(2)	NA(2)	NA(2)	-0.1%	NA(2)	NA(2)	NA(2)	NA(2)
Celis et al. [12]	NA(1)	NA(2)	NA(2)	NA(2)	NA(2)	NA(1)	NA(2)	NA(2)	NA(2)	NA(2)	NA(1)	NA(2)	NA(2)	NA(2)	NA(2)	NA(1)	NA(2)	NA(2)	NA(2)	NA(2)
Agarwal et at. [3]	-2.4%	-1.2%	-2.0%	-1.8%	NA(2)*	-2.8%	-2.2%	-2.0%	-2.0%	NA(2)*	-0.6%	-5.8%	-0.2%	-0.5%	NA(2)*	-0.1%	-0.3%	-0.0%	-0.1%	NA(2)*
Thomas et at. [43]	NA(2)	NA(2)	NA(2)	NA(2)	-1.1%	NA(2)	NA(2)	NA(2)	NA(2)	-1.7%	NA(2)	NA(2)	NA(2)	NA(2)	-0.4%	NA(2)	NA(2)	NA(2)	NA(2)	-0.1%

Figure: Accuracy drop compared with no fairness constraints when $\varepsilon = 0.03$ under SP.

Figure: Ablation study for the validation size on the COMPAS set.

Experiments

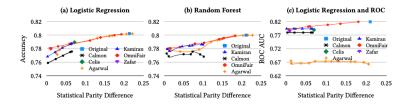


Figure: The trade-off between fairness metric and accuracy on Adult dataset.

ε	Accuracy	SP	FNR
Baseline	63.9%	0.233	0.180
0.01	N/A	N/A	N/A
0.02	N/A	N/A	N/A
0.03	63.6%	0.03	0.044
0.04	63.4%	0.016	0.035
0.05	63.3%	0.028	0.007
0.06	62.7%	0.057	0.032

Figure: Enforcing SP and FNR on COMPAS dataset.

Jiaxin Liu (Group Reading)

Paper: OmniFair: A Declarative System for N

November 4, 2021

 Hantian Zhang et al. "OmniFair: A Declarative System for Model-Agnostic Group Fairness in Machine Learning". In: *Proceedings of the 2021 International Conference on Management of Data*. 2021, pp. 2076–2088.